
CHAPTER

19

Repetition

2
Definition
Loop: A sequence of instructions that are
repeated.

Language of Loops
Looping is not the only word used for this
concept. Other popular ones include iteration
and repetition.

Everyday Repeating Actions
Pupils already have a basic knowledge of
everyday repetition. This may be the lyrics
of a chorus in a popular song or the actions
in a dance craze. Then there are the many
mundane tasks that involve repetition: washing
up, cleaning, decorating, to name a few.
Making these links with pupils’ established
schema of understanding grounds our new
interpretation of repetition to established
knowledge.

Programming Loops

Count-controlled loop
A count-controlled loop is one that has a
number that controls how many times the
loops will run for. This loop might have one
or many instructions that are repeated.

Count-controlled loop in algorithm

Fill glass with water
Loop 5 times

Drink water
pause

Count-controlled loop in code

Act Two Times Same as Act, Act
Helping pupils see that a sequence of the
same commands can be replaced with a

LT_UK_TB_Ch 02.indd 19LT_UK_TB_Ch 02.indd 19 11/15/2022 5:38:09 PM11/15/2022 5:38:09 PM

Scratch IT — Teaching Primary Programming with Scratch

20

count-controlled loop and vice versa is
important for understanding both why we
might choose to loop (less instructions, more
elegant code) and how it works.

Role-playing simple count-controlled loops
in this manner before writing their own to
test their understanding, followed by con-
verting a simple sequence to a loop and vice
versa, are useful steps in comprehending how
a simple count-controlled loop works.
Count-controlled loops have a definite end.
Once the number of loops defined by the
number is complete they end.

Indefinite Loops
Indefinite loops are ones where we don’t
know when they are going to end or how
many loops they will complete.
The simplest indefinite loop in Scratch is the
forever or infinite loop.

Infinite loop in algorithm
Loop always

Check your phone

Infinite loop in code

Unlike a count-controlled loop, the infinite
loop has no ending, which means that no
programming structure can be built after it.
Most programming languages do not have
infinite loops, but it is a very useful stepping
stone towards greater complexity.

Condition-ends-loop
A condition-ends-loop is also an indefinite
loop in that we do not know when it will end
or how many times it will repeat.
Unlike our infinite forever loop there is a way
of ending the loop using a condition.

Condition-ends-loop in algorithm
Start eating food
Loop until full up
• Eat
You might have noticed that I have chosen to
indent each action inside a loop algorithm.
This helps the reader to know what is inside
the loop. An algorithm can be written in any
way the writer chooses, and so it is possible
to choose some other way to show what is
inside a loop, such as bullet points, as long as
it is clear to another human reading it.

Jump
Jump
Jump

Same as
Loop 3 times
 Jump

Do Twice
 Stand
 Sit

Same as
Stand
Sit
Stand
Sit

LT_UK_TB_Ch 02.indd 20LT_UK_TB_Ch 02.indd 20 11/15/2022 5:38:09 PM11/15/2022 5:38:09 PM

Repetition

21

Condition-ends-loop in code

Condition-ends-loop flow of control
Many pupils believe that as soon as the con-
dition is met the loop will end. Whilst this
is generally true, it actually only ends if the
condition is true at the moment it is checked
in the flow of control.

In our flow of control example above, if our
sprite was touching the colour purple while
waiting one second but was not touching
purple when the condition is checked, the
loop would not end.

The condition is checked represented by the
diamond, as we have not touched the colour
purple we proceed down the black line to run
next costume (dot) and wait (dot). The loop
then goes back to check the condition (dia-
mond) if we are touching purple we would
exit the loop via the green line. (To help you
understand this more, read chapter 27 on flow
of control.)

Cumulative effect
Repetitive tasks such as washing up, cleaning
and decorating, all have a cumulative effect,
they all build on the previous action to achieve
a greater purpose be that clean dishes, clean
home or fresh painted wall. Some, but not all,
programming uses of repetition will share
this attribute. In this counting program a
count-controlled loop has a clear cumulative
affect, as the number increases from 0 to 9.

Loop Ended by a Condition

Flow of control in a condition-ends-loop

LT_UK_TB_Ch 02.indd 21LT_UK_TB_Ch 02.indd 21 11/15/2022 5:38:09 PM11/15/2022 5:38:09 PM

Scratch IT — Teaching Primary Programming with Scratch

22

(You might want to read chapter 4 on vari-
ables, to help you understand this more.)

Variables Used to Control Loops
We have already seen that a variable can be
used to create a cumulative affect and it can
also be used to control the number of times a
loop repeats.
In this example the user is asked how many
sides they would like the shape to have. Their
response is assigned to a variable called
no_sides, which is short for number of sides.
The value is then used to set how many times
the count-controlled loop repeats and to
divide 360 by the number assigned to the
no_sides variable.
So if 3 is input by the user then the loop
will repeat 3 times and turn 360 divided
by 3, which makes 120 degrees, drawing a
triangle.

Loops Can be Nested
The everyday computing team put nested
loops as their highest complexity aspect of
primary/elementary repetition. You can view
their trajectory at the end of this chapter. It
is useful to reclassify this as more complex,
as it was often taught soon after introducing
count controlled loops in many primary/
elementary curriculums. Whilst pupils can
often nest loops to create wonderful patterns,
they are often unable to explain how they
work if introduced too early on.

Nested Loops Multiply
Loops that are nested inside other loops have
a multiplying effect.

In this example we can see that the jump
command is within two loops, and the repeat
3 loop is inside the outer repeat 2 loop. This
means that both loops count values are

A variable controlling number of repetitions

Nested loops shown using one flow of control notation

LT_UK_TB_Ch 02.indd 22LT_UK_TB_Ch 02.indd 22 11/15/2022 5:38:09 PM11/15/2022 5:38:09 PM

Repetition

23

multiplied by each other for the jump action,
leading to 2×3 = 6 jumps.

Action Maths No. loops Times run
clap 2× 1 2
jump 2×3 2 6
laugh 2×3×2 3 12

Can you calculate how many laughs (bottom
purple block) there would be?

How Does it Stop?
Once you have more than one type of loop
in your programming backpack you can ask
pupils how the loop stops? This is more than
just a formative assessment opportunity as
it gets to the heart of what type of loop to
use when. Count-controlled loops are useful
where you want something to take place for
a limited amount of time or distance. Infinite
loops are useful if you don’t want something
to end.

Loops & Conditions
Loops have a very close relationship with
conditional selection. They allow conditions
to be acted on indefinitely. So much so that
early Scratch had a block called forever-if

that combined both aspects. Once conditions
and indefinite loops have been introduced
separately, the next step is to combine them
to use them in gaming modules of work.
(You can read more about this on the chapter 3
on conditional selection.)

Order of Introduction
1. Count-controlled loop
2. Indefinite-loop
3. Loop-ended-by-a-condition
4. Conditions-checked-within-a-loop
5. Loop-controlled-by-variable
6. Nested-loops
This is my research-informed order to intro-
duce loop types. This is based on my inter-
pretation of the repetition trajectory from the
Everyday computing team which is printed at
the end of this chapter. It is also informed by
the complexity of role-playing and writing
repetition algorithms and working with flow
of control for each of these loop types.
In my opinion, 3 and 4 are of a very simi-
lar complexity; if I have reduced time I leave
out 3.

A condition checked inside a loop

LT_UK_TB_Ch 02.indd 23LT_UK_TB_Ch 02.indd 23 11/15/2022 5:38:09 PM11/15/2022 5:38:09 PM

Teaching Primary Programming
With Scratch

Teacher Book – Research-Informed Approaches

PHIL BAGGE

Published in 2022 by University of Buckingham Press,
an imprint of Legend Times Group
51 Gower Street
London WC1E 6HJ
info@unibuckinghampress.com
www.unibuckinghampress.com

Copyright © Phil Bagge 2022

Published by arrangement with Hampshire Inspection and Advisory Service (part of Hampshire County
Council)

All rights reserved. No reproduction, copy or transmission of this publication may be made without writ-
ten permission.

Except for the quotation of short passages for the purposes of research or private study, or criticism and
review, no part of this publication may be reproduced, stored in a retrieval system, copied or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, now known
or hereafter invented, save with written permission or in accordance with the provisions of the Copyright,
Design and Patents Act 1988, or under terms of any licence permitting limited copying issued by the
publisher.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out, or otherwise circulated without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition including this condition being
imposed on the subsequent purchaser.

Any person who does any unauthorised act in relation to this publication may be liable to criminal prose-
cution and civil claims for damages.

ISBN 978-1-91505-4-203

3

CONTENTS

Overview

7Foreword by Sue Sentance
Introduction 9

Concepts

1 Simple Sequence 13
2 Repetition 19
3 Conditional Selection 25
4 Variables 35
5 Procedures 47
6 Algorithms 53
7 Decomposition 57

Pedagogy

8 Concept before Coding 65
9 Code Comprehension First 73

10 Predict 75
11 Investigate 83
12 Modify 91
13 Create 97
14 More PRIMM Adaptations 101
15 Design 107
16 Faded Examples 117

LT_UK_TB_Ch 01.indd 3LT_UK_TB_Ch 01.indd 3 11/15/2022 5:38:03 PM11/15/2022 5:38:03 PM

 17 Guided Discovery 123
 18 I Build You Build 127
 19 Parsons 133
 20 Paired Programming 137

Processes

 21 Progression 141
 22 Collaboration 145
 23 Debugging 149
 24 Evaluation 155
 25 More than One Method 159
 26 Modularisation & Sub-Goal Labelling 163
 27 Flow of Control 167
 28 Variability 173
 29 Assessment 177

More Support

 30 Concrete to Explain Abstract 185
 31 Trace and Explain 191
 32 More Clues 197
 33 Read Aloud 201
 34 Support Cards 203

 Glossary 213

4

LT_UK_TB_Ch 01.indd 4LT_UK_TB_Ch 01.indd 4 11/15/2022 5:38:03 PM11/15/2022 5:38:03 PM

